Frete Grátis
  • Google Plus

A Statistical Approach To Neural Networks For Pattern Recognition (Cód: 1629348)

Dunne,Robert

John Wiley & Sons

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 621,10 em até 10x de R$ 62,11 sem juros
Cartão Saraiva R$ 590,05 (-5%) em até 1x no cartão ou em até 12x de R$ 51,76 sem juros
Grátis

Cartão Saraiva
Quer comprar em uma loja física? Veja a disponibilidade deste produto
?

Entregas internacionais: Consulte prazos e valores de entrega para regiões fora do Brasil na página do Carrinho.

ou receba na loja com frete grátis

X

* Válido para compras efetuadas em dias úteis até às 18:00, horário de Brasília, com cartão de crédito e aprovadas na primeira tentativa.

Formas de envio Custo Entrega estimada
X Consulte as lojas participantes

Saraiva MegaStore Shopping Eldorado Av. Rebouças, 3970 - 1º piso - Pinheiros CEP: 05402-600 - São Paulo - SP

Descrição

An accessible and up-to-date treatment featuring the connection between neural networks and statistics

A Statistical Approach to Neural Networks for Pattern Recognition presents a statistical treatment of the Multilayer Perceptron (MLP), which is the most widely used of the neural network models. This book aims to answer questions that arise when statisticians are first confronted with this type of model, such as:

How robust is the model to outliers?
Could the model be made more robust?
Which points will have a high leverage?
What are good starting values for the fitting algorithm?

Thorough answers to these questions and many more are included, as well as worked examples and selected problems for the reader. Discussions on the use of MLP models with spatial and spectral data are also included. Further treatment of highly important principal aspects of the MLP are provided, such as the robustness of the model in the event of outlying or atypical data; the influence and sensitivity curves of the MLP; why the MLP is a fairly robust model; and modifications to make the MLP more robust. The author also provides clarification of several misconceptions that are prevalent in existing neural network literature.

Throughout the book, the MLP model is extended in several directions to show that a statistical modeling approach can make valuable contributions, and further exploration for fitting MLP models is made possible via the R and S-PLUS® codes that are available on the book's related Web site. A Statistical Approach to Neural Networks for Pattern Recognition successfully connects logistic regression and linear discriminant analysis, thus making it a critical reference and self-study guide for students and professionals alike in the fields of mathematics, statistics, computer science, and electrical engineering.

Características

Produto sob encomenda Sim
Marca John Wiley & Sons
Cód. Barras 9780471741084
Altura 23.62 cm
I.S.B.N. 9780471741084
Profundidade 1.93 cm
Referência .
Número da edição 1
Ano da edição 2007
MÊS JULHO
Idioma Inglês
Número de Páginas 288
Peso 0.54 Kg
Largura 16.18 cm
AutorDunne,Robert

Avaliações

Avaliação geral: 0

Você está revisando: A Statistical Approach To Neural Networks For Pattern Recognition

A Statistical Approach To Neural Networks For Pattern Recognition (Cód: 1629348) A Statistical Approach To Neural Networks For Patt... (Cód: 1629348)
R$ 621,10
A Statistical Approach To Neural Networks For Pattern Recognition (Cód: 1629348) A Statistical Approach To Neural Networks For Patt... (Cód: 1629348)
R$ 621,10