Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8
e-book

Applied Missing Data Analysis in the Health Sciences (Cód: 9285962)

Zhou,Xiao-hua; Ding,Xaiobo; Lui,Danping; Zhou,Chuan

Wiley (Digital)

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 155,64

em até 5x de R$ 31,13 sem juros

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 5x sem juros de


Applied Missing Data Analysis in the Health Sciences

R$155,64

Descrição

A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various modern statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference methods and the field of diagnostic medicine. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into traditional techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book?s subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using the SAS?, Stata?, R, and WinBUGS software packages Numerous examples of case studies in the field of biostatistics to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal?resource for health science researchers and applied statisticians.

Características

Peso 0.00 Kg
Produto sob encomenda Não
Marca Wiley (Digital)
Número de Páginas 256 (aproximado)
Idioma 337
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Proteção Drm Sim
Coleção / Série Statistics in Practice
Início da Venda 10/03/2016
Código do Formato Epub
Cód. Barras 9781118573648
Número da edição 1
Ano da Publicação 114
AutorZhou,Xiao-hua; Ding,Xaiobo; Lui,Danping; Zhou,Chuan