Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Distributed Strategic Learning for Wireless Engineers (Cód: 9450138)


Taylor & Francis (Livros Digitais)

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 467,85

em até 10x de R$ 46,79 sem juros


Em até 1x sem juros de

Cartão Saraiva:


Em até 10x sem juros de

Distributed Strategic Learning for Wireless Engineers



Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory'apos;s application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered.
Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as:

How much information is enough for effective distributed decision making?
Is having more information always useful in terms of system performance?
What are the individual learning performance bounds under outdated and imperfect measurement?
What are the possible dynamics and outcomes if the players adopt different learning patterns?
If convergence occurs, what is the convergence time of heterogeneous learning?
What are the issues of hybrid learning?
How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others?
What is the impact of risk-sensitivity in strategic learning systems?
How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it?
How can one learn 'quot;unstable'quot; equilibria and global optima in a fully distributed manner?

The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.


Peso 0.00 Kg
Produto sob encomenda Sim
Marca Taylor & Francis (Livros Digitais)
Número de Páginas 496 (aproximado)
Idioma 337
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Pdf
Gratuito Não
Proteção Drm Sim
Tamanho do Arquivo 6428
Início da Venda 18/05/2012
Código do Formato Pdf
Cód. Barras 9781439876442
Ano da Publicação 112