Artboard 33 Artboard 16 Artboard 18 Artboard 42 Artboard 21 Artboard 5 Artboard 45 Artboard 22 Artboard 42 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 23 Artboard 4 Artboard 9 Artboard 6 Artboard 7 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 43 Artboard 44 Artboard 39 Artboard 24 Artboard 13 Artboard 24 Artboard 31 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 17 Artboard 6 Artboard 27 Artboard 30 Artboard 29 Artboard 26 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 50 Artboard 26 Artboard 40 Artboard 21 Artboard 10 Artboard 37 Artboard 46 Artboard 8
e-book

Intelligent Data Analysis for e-Learning (Cód: 9923967)

Miguel,Jorge; Fatos Xhafa; Santi Caballé

ELSEVIER S&T

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 378,86

em até 10x de R$ 37,89 sem juros

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 10x sem juros de


Intelligent Data Analysis for e-Learning

R$378,86

Descrição

Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Indexing: The books of this series are submitted to EI-Compendex and SCOPUSProvides guidelines for anomaly detection, security analysis, and trustworthiness of data processingIncorporates state-of-the-art, multidisciplinary research on online collaborative learning, social networks, information security, learning management systems, and trustworthiness predictionProposes a parallel processing approach that decreases the cost of expensive data processing Offers strategies for ensuring against unfair and dishonest assessmentsDemonstrates solutions using a real-life e-Learning context

Características

Peso 0.00 Kg
Produto sob encomenda Sim
Marca ELSEVIER S&T
Número de Páginas 192 (aproximado)
Idioma 337
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Proteção Drm Sim
Tamanho do Arquivo 11485
Início da Venda 06/09/2016
Código do Formato Epub
Cód. Barras 9780128045459
Ano da Publicação 2016
AutorMiguel,Jorge; Fatos Xhafa; Santi Caballé