Frete Grátis
  • Google Plus

Joint Source Channel Coding Using Arithmetic Codes (Cód: 7048174)

Dongsheng Bi; Michael W. Hoffman; Khalid Sayood

Morgan James Publishing POD

Ooopss! Este produto está temporariamente indisponível.
Mas não se preocupe, nós avisamos quando ele chegar.

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 206,70 em até 6x de R$ 34,45 sem juros
Cartão Saraiva R$ 196,37 (-5%) em até 1x no cartão ou em até 10x de R$ 20,67 sem juros

Crédito:
Boleto:
Cartão Saraiva:

Total: R$0,00

Em até 6x sem juros de R$ 0,00


Joint Source Channel Coding Using Arithmetic Codes

R$206,70

Descrição

Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used for decoding convolutional codes, such as the list Viterbi decoding algorithm, can be applied directly on the trellis. The finite state machine interpretation can be easily migrated to Markov source case. We can encode Markov sources without considering the conditional probabilities, while using the list Viterbi decoding algorithm which utilizes the conditional probabilities. We can also use context-based arithmetic coding to exploit the conditional probabilities of the Markov source and apply a finite state machine interpretation to this problem.

The finite state machine interpretation also allows us to more systematically understand arithmetic codes with forbidden symbols. It allows us to find the partial distance spectrum of arithmetic codes with forbidden symbols. We also propose arithmetic codes with memories which use high memory but low implementation precision arithmetic codes. The low implementation precision results in a state machine with less complexity. The introduced input memories allow us to switch the probability functions used for arithmetic coding. Combining these two methods give us a huge parameter space of the arithmetic codes with forbidden symbols. Hence we can choose codes with better distance properties while maintaining the encoding efficiency and decoding complexity. A construction and search method is proposed and simulation results show that we can achieve a similar performance as turbo codes when we apply this approach to rate 2/3 arithmetic codes.

Table of Contents: Introduction / Arithmetic Codes / Arithmetic Codes with Forbidden Symbols / Distance Property and Code Construction / Conclusion

Características

Produto sob encomenda Sim
Marca Morgan James Publishing POD
Cód. Barras 9781608451487
Altura 23.50 cm
I.S.B.N. 9781608451487
Profundidade 0.41 cm
Referência 9781608451487
Ano da edição 2010
Idioma Inglês
Número de Páginas 78
Peso 0.15 Kg
Largura 19.10 cm
AutorDongsheng Bi; Michael W. Hoffman; Khalid Sayood

Avaliações

Avaliação geral: 0

Você está revisando: Joint Source Channel Coding Using Arithmetic Codes