Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8
e-book

Machine Learning with Spark - Second Edition (Cód: 9758989)

Rajdeep Dua; Manpreet Singh Ghotra; Nick Pentreath

Packt Publishing

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 128,54

em até 4x de R$ 32,14 sem juros

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 4x sem juros de


Machine Learning with Spark - Second Edition

R$128,54

Descrição

Create scalable machine learning applications to power a modern data-driven business using Spark 2.xAbout This Book• Get to the grips with the latest version of Apache Spark• Utilize Spark's machine learning library to implement predictive analytics• Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn• Get hands-on with the latest version of Spark ML• Create your first Spark program with Scala and Python• Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2• Access public machine learning datasets and use Spark to load, process, clean, and transform data• Use Spark's machine learning library to implement programs by utilizing well-known machine learning models• Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models• Write Spark functions to evaluate the performance of your machine learning modelsIn DetailThis book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.By the end of this book, you will acquire the skills to leverage Spark's features to create your own scalable machine learning applications and power a modern data-driven business.Style and approachThis practical tutorial with real-world use cases enables you to develop your own machine learning systems with Spark. The examples will help you combine various techniques and models into an intelligent machine learning system.

Características

Peso 0.00 Kg
Produto sob encomenda Sim
Marca Packt Publishing
Número de Páginas 572 (aproximado)
Idioma 337
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Proteção Drm Sim
Tamanho do Arquivo 20582
Início da Venda 28/04/2017
Código do Formato Epub
Cód. Barras 9781785886423
Número da edição 2
Ano da Publicação 2017
AutorRajdeep Dua; Manpreet Singh Ghotra; Nick Pentreath