Frete Grátis
  • Google Plus

Net Developers - Machine Learning - A Bayesian And Optimization Perspective (Cód: 9219453)

Theodoridis,Sergios

Academic Press

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 1.549,60 em até 10x de R$ 154,96 sem juros
Cartão Saraiva R$ 1.472,12 (-5%) em até 1x no cartão ou em até 12x de R$ 129,13 sem juros
Grátis

Cartão Saraiva
Quer comprar em uma loja física? Veja a disponibilidade deste produto
?

Entregas internacionais: Consulte prazos e valores de entrega para regiões fora do Brasil na página do Carrinho.

ou receba na loja com frete grátis

X

* Válido para compras efetuadas em dias úteis até às 18:00, horário de Brasília, com cartão de crédito e aprovadas na primeira tentativa.

Formas de envio Custo Entrega estimada
X Consulte as lojas participantes

Saraiva MegaStore Shopping Eldorado Av. Rebouças, 3970 - 1º piso - Pinheiros CEP: 05402-600 - São Paulo - SP

Descrição

This tutorial text gives a unifying perspective on machine learning by covering bothprobabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence liesin the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling.Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.'

Características

Produto sob encomenda Sim
Marca Academic Press
Cód. Barras 9780128015223
Altura 23.62 cm
I.S.B.N. 9780128015223
Profundidade 5.08 cm
Referência 032647623
Acabamento Capa dura
Ano da edição 2015
Idioma Inglês
Número de Páginas 1062
Peso 2.34 Kg
Largura 19.30 cm
AutorTheodoridis,Sergios

Avaliações

Avaliação geral: 0

Você está revisando: Net Developers - Machine Learning - A Bayesian And Optimization Perspective

Net Developers - Machine Learning - A Bayesian And Optimization Perspective (Cód: 9219453) Net Developers - Machine Learning - A Bayesian And... (Cód: 9219453)
R$ 1.549,60
Net Developers - Machine Learning - A Bayesian And Optimization Perspective (Cód: 9219453) Net Developers - Machine Learning - A Bayesian And... (Cód: 9219453)
R$ 1.549,60