Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Recent Advances In Robot Learning (Cód: 6106803)

Judy A. Franklin; Tom M. Mitchell; Sebastian Thrun


Este produto está temporariamente indisponível no site, mas não se preocupe, você pode reservá-lo para retirada em uma loja física!

Reserve seu produto na loja para retirada em até 1 hora.
Ops! Este produto está temporariamente indisponível. Mas não se preocupe, nós avisamos quando ele chegar.
Ops! Este produto está temporariamente indisponível. Mas não se preocupe, nós avisamos quando ele chegar.

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 1.047,70

em até 10x de R$ 104,77 sem juros
Cartão Saraiva: 1x de R$ 995,32 (-5%)


Em até 1x sem juros de

Cartão Saraiva:


Em até 10x sem juros de

Recent Advances In Robot Learning



Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both
active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as
diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other
publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that
tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are
usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made
within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other
important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great
variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven
invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).


Peso 0.45 Kg
Produto sob encomenda Sim
I.S.B.N. 9780792397458
Referência 9780792397458
Altura 23.40 cm
Largura 15.60 cm
Profundidade 1.43 cm
Número de Páginas 228
Idioma Inglês
Cód. Barras 9780792397458
Ano da edição 1996
AutorJudy A. Franklin; Tom M. Mitchell; Sebastian Thrun