Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Trends In Optical Non-destructive Testing And Inspection (Cód: 3049667)

"rastogi,P.k.; Inaudi, D."

Elsevier Science Usa

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 2.053,30

em até 10x de R$ 205,33 sem juros
Cartão Saraiva: 1x de R$ 1.950,64 (-5%)


Em até 1x sem juros de

Cartão Saraiva:


Em até 10x sem juros de

Trends In Optical Non-destructive Testing And Inspection


Quer comprar em uma loja física? Veja a disponibilidade deste produto

Entregas internacionais: Consulte prazos e valores de entrega para regiões fora do Brasil na página do Carrinho.

ou receba na loja com frete grátis

Formas de envio Custo Entrega estimada

* Válido para compras efetuadas em dias úteis até às 15:00, horário de Brasília, com cartão de crédito e aprovadas na primeira tentativa.

X Consulte as lojas participantes

Saraiva MegaStore Shopping Eldorado Av. Rebouças, 3970 - 1º piso - Pinheiros CEP: 05402-600 - São Paulo - SP


This book covers a wide range of measurement techniques broadly referred to as Optical Metrology, with emphasis on their applications to nondestructive testing. If we look separately at each of the two terms making the generic name Optical Metrology, we find a link to two of the most distinctive aspects of humans: a particularly well developed sense of vision and a desire to classify things using numbers and rules.Of all our five senses, vision is certainly the most developed and the closest to the rational part of our brain. It can be argued that our memory is strongly dependent on images and the brain is particularly good at processing the stimuli received from these images to extract information. Measuring, sizing and counting are, on the other hand, among the fundamental building blocks of modern society. The use of abstract quantities like size, value or intensity has simplified the description of complex enquiry and is the basis of modern science and economy. Hence, it would seem natural that the combination of two such basic aspects should result in the birth of a new field of science. However, it is known that his has not been the case. Optical Metrology remains classified as a group of special techniques used mainly in niche applications. Optical Metrology may be rightly described as an ensemble of techniques in which fields such as physics, electrical and mechanical engineering, and computer science merge and blend in new ways.This book is intended as a tribute to the career of Professor Leopold Pflug. By looking back at his lifelong commitment to the application of optical metrology to the service of engineering sciences, more particularly devoted to the observation of the real behavior of structural components, one can retrace the major revolutions that have taken place in this domain. Starting his activity in 1971 as the head of the Laboratory for Stress Analysis at the EPFL in Switzerland, he first employed photoelasticity as a tool to improve the understanding of the real behavior of complex structures. However he soon recognized the necessity of working with the real materials used to build these structures instead of on replicas made of optically birefringent materials. He then focussed on the use of moire techniques which sparked his fascination with laser-based holography and speckle-based methods. The advent of information technology led him to open up to the use of ESPI and digital image processing techniques. Finally, in the mid 1990s he became interested in the use of optical fibers as a tool for sensing deformations inside structures, not only on their surfaces as in the case of whole-field methods. It is interesting to note the parallel in the evolution of optical metrology vis a vis developments in other fields: the development of lasers led to holographic interferometry, the availability of frame-grabbers led to ESPI and the emergence of fiber optic communications opened the way to the development of fiber optic sensors. This puts in sharp perspective the strong dependence of optical metrology on the latest technology for its development. Also interesting to note is that all fields in optical metrology touched upon by Professor Pflug are still of great relevance, as shown by the contributions in this volume.This book is, however, not intended as a commemoration, rather as an occasion to review the trends and undercurrents that are driving the field of optical metrology, with emphasis on nondestructive testing. All the authors were asked to summarize the recent achievements in their respective fields and to speculate about the future. As a result it has become apparent that it is difficult although not impossible to spot general trends in these disparate fields. Optical metrology has considerably benefited from some of the most important innovations of the recent past: lasers, computers and fiber optics communication, all of which found their direct inspiration from the developments in the world of electronics.In recent years we have also witnessed a shift of power from states to corporations. This has created the need to produce quick results useful to industry. Optical nondestructive testing has certainly adapted to this evolution, and several contributions in this book show that the researchers in this field understand the importance of developing technology that can be used by the industry to solve specific problems. We should also not forget that optical nondestructive testing is essentially a 'service technology' and should as such not only focus on serving its clients in the best possible way, but also should continually emphasize, extend and enhance its services to new users still unaware of its potential. Hopefully this book will help in spreading awareness of the potentials of optical metrology and in focusing on the challenges of the future.


Peso 0.44 Kg
Produto sob encomenda Sim
Marca Elsevier Science Usa
I.S.B.N. 9780080430201
Referência 9780080430201
Altura 24.10 cm
Largura 17.09 cm
Profundidade 3.20 cm
Número de Páginas 654
Idioma Inglês
Acabamento Capa dura
Cód. Barras 9780080430201
Número da edição 1
País de Origem Estados Unidos
Autor"rastogi,P.k.; Inaudi, D."