Artboard 33 Artboard 16 Artboard 18 Artboard 42 Artboard 21 Artboard 5 Artboard 45 Artboard 22 Artboard 42 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 23 Artboard 4 Artboard 9 Artboard 6 Artboard 7 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 43 Artboard 44 Artboard 39 Artboard 24 Artboard 13 Artboard 24 Artboard 31 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 17 Artboard 6 Artboard 27 Artboard 30 Artboard 29 Artboard 26 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 50 Artboard 26 Artboard 40 Artboard 21 Artboard 10 Artboard 37 Artboard 46 Artboard 8

Bayesian Methods for Hackers (Cód: 9244376)

Davidson-Pilon,Cameron

Addison Wesley

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

De: R$ 199,70

Por: R$ 179,73

em 1x no cartão de crédito
Crédito: R$ 199,70 em até 6x de R$ 33,28 sem juros
Boleto: R$ 179,73 (-10%)
Cartão Saraiva: 1x de R$ 179,73 (-10%)

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 6x sem juros de


Bayesian Methods for Hackers

R$199,70

Quer comprar em uma loja física? Veja a disponibilidade deste produto

Entregas internacionais: Consulte prazos e valores de entrega para regiões fora do Brasil na página do Carrinho.

ou receba na loja com frete grátis

X
Formas de envio Custo Entrega estimada

* Válido para compras efetuadas em dias úteis até às 15:00, horário de Brasília, com cartão de crédito e aprovadas na primeira tentativa.

X Consulte as lojas participantes

Saraiva MegaStore Shopping Eldorado Av. Rebouças, 3970 - 1º piso - Pinheiros CEP: 05402-600 - São Paulo - SP

Descrição

Master Bayesian Inference through Practical Examples and Computation Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice freeing you to get results using computing power. 'Bayesian Methods for Hackers ' illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you ve mastered these techniques, you ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes Learning the Bayesian state of mind and its practical implications Understanding how computers perform Bayesian inference Using the PyMC Python library to program Bayesian analyses Building and debugging models with PyMC Testing your model s goodness of fit Opening the black box of the Markov Chain Monte Carlo algorithm to see how and why it works Leveraging the power of the Law of Large Numbers Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning Using loss functions to measure an estimate s weaknesses based on your goals and desired outcomes Selecting appropriate priors and understanding how their influence changes with dataset size Overcoming the exploration versus exploitation dilemma: deciding when pretty good is good enough Using Bayesian inference to improve A/B testing Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.'

Características

Peso 0.32 Kg
Produto sob encomenda Sim
Marca Addison Wesley
I.S.B.N. 9780133902839
Referência 031969724
Altura 23.11 cm
Largura 17.78 cm
Profundidade 0.76 cm
Número de Páginas 256
Idioma Inglês
Acabamento Brochura
Cód. Barras 9780133902839
Ano da edição 2015
AutorDavidson-Pilon,Cameron