Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Calculus of Thought - Neuromorphic Logistic Regression in Cognitive Machines (Cód: 9756056)

Rice, Daniel M


Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 203,85

em até 6x de R$ 33,98 sem juros


Em até 1x sem juros de

Cartão Saraiva:


Em até 6x sem juros de

Calculus of Thought - Neuromorphic Logistic Regression in Cognitive Machines



Calculus of Thought: Neuromorphic Logistic Regression in Cognitive Machines is a must-read for all scientists about a very simple computation method designed to simulate big-data neural processing. This book is inspired by the Calculus Ratiocinator idea of Gottfried Leibniz, which is that machine computation should be developed to simulate human cognitive processes, thus avoiding problematic subjective bias in analytic solutions to practical and scientific problems. The reduced error logistic regression (RELR) method is proposed as such a 'quot;Calculus of Thought.'quot; This book reviews how RELR'apos;s completely automated processing may parallel important aspects of explicit and implicit learning in neural processes. It emphasizes the fact that RELR is really just a simple adjustment to already widely used logistic regression, along with RELR'apos;s new applications that go well beyond standard logistic regression in prediction and explanation. Readers will learn how RELR solves some of the most basic problems in today'apos;s big and small data related to high dimensionality, multi-colinearity, and cognitive bias in capricious outcomes commonly involving human behavior. Provides a high-level introduction and detailed reviews of the neural, statistical and machine learning knowledge base as a foundation for a new era of smarter machines Argues that smarter machine learning to handle both explanation and prediction without cognitive bias must have a foundation in cognitive neuroscience and must embody similar explicit and implicit learning principles that occur in the brain


Peso 0.00 Kg
Produto sob encomenda Sim
Número de Páginas 272 (aproximado)
Idioma 337
Acabamento e-book
Formato Livro Digital Epub
Gratuito Não
Proteção Drm Sim
Cód. Barras 9780124104525
Ano da Publicação 2013
AutorRice, Daniel M