Artboard 33 Artboard 16 Artboard 18 Artboard 15 Artboard 21 Artboard 1 Artboard 2 Artboard 5 Artboard 45 Artboard 45 Artboard 22 Artboard 9 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 8 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 13 Artboard 23 Artboard 10 Artboard 4 Artboard 9 Artboard 20 Artboard 6 Artboard 11 Artboard 7 Artboard 3 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 39 Artboard 24 Artboard 13 Artboard 19 Artboard 7 Artboard 24 Artboard 31 Artboard 4 Artboard 14 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 12 Artboard 17 Artboard 17 Artboard 6 Artboard 27 Artboard 19 Artboard 30 Artboard 29 Artboard 29 Artboard 26 Artboard 18 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 48 Artboard 50 Artboard 26 Artboard 16 Artboard 40 Artboard 21 Artboard 29 Artboard 10 Artboard 37 Artboard 3 Artboard 3 Artboard 46 Artboard 8

Handbook Of Metric Fixed Point Theory (Cód: 6326495)

W.A. Kirk; B. Sims

SPRINGER VERLAG POD

Ooopss! Este produto está temporariamente indisponível.
Mas não se preocupe, nós avisamos quando ele chegar.

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 1.600,10 em até 10x de R$ 160,01 sem juros
Cartão Saraiva R$ 1.520,10 (-5%) em até 1x no cartão ou em até 15x de R$ 106,67 sem juros

Crédito:
Boleto:
Cartão Saraiva:

Total: R$0,00

Em até 10x sem juros de R$ 0,00


Handbook Of Metric Fixed Point Theory

R$1.600,10

Descrição

Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching
outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive.
Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces. Because most of the spaces studied in analysis share many algebraic and
topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric
fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts. The purpose of the Handbook is to provide a
primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a
deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying
spaces. The level of exposition is directed to a wide audience, including students and established researchers.

Características

Produto sob encomenda Sim
Marca SPRINGER VERLAG POD
Cód. Barras 9780792370734
Altura 23.40 cm
I.S.B.N. 9780792370734
Profundidade 3.81 cm
Referência 9780792370734
Ano da edição 2001
Idioma Inglês
Número de Páginas 720
Peso 0.91 Kg
Largura 15.60 cm
AutorW.A. Kirk; B. Sims

Avaliações

Avaliação geral: 0

Você está revisando: Handbook Of Metric Fixed Point Theory