Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 12Artboard 28Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Improved Forecast Accuracy In Airline Revenue Management By Unconstraining Demand Estimates From Cen (Cód: 6105870)

Richard H. Zeni

Universal-Publishers.com POD

Este produto está temporariamente indisponível no site, mas não se preocupe, você pode reservá-lo para retirada em uma loja física!

Reserve seu produto na loja para retirada em até 1 hora.
Ops! Este produto está temporariamente indisponível. Mas não se preocupe, nós avisamos quando ele chegar.
Ops! Este produto está temporariamente indisponível. Mas não se preocupe, nós avisamos quando ele chegar.

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 174,90

em até 5x de R$ 34,98 sem juros
Cartão Saraiva: 1x de R$ 166,16 (-5%)

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 5x sem juros de


Improved Forecast Accuracy In Airline Revenue Management By Unconstraining Demand Estimates From Cen

R$174,90

Descrição

Accurate forecasts are crucial to a revenue management system. Poor estimates of demand lead to inadequate inventory controls and sub-optimal revenue performance. Forecasting for airline revenue management systems is inherently difficult. Competitive actions, seasonal factors, the economic environment, and constant fare changes are a few of the hurdles that must be overcome. In addition, the fact that most of the historical demand data is censored further complicates the problem. This dissertation examines the challenge of forecasting for an airline revenue management system in the presence of censored demand data. This dissertation analyzed the improvement in forecast accuracy that results from estimating demand by unconstraining the censored data.

Little research has been done on unconstraining censored data for revenue management systems. Airlines tend to either ignore the problem or use very simple ad hoc methods to deal with it. A literature review explores the current methods for unconstraining censored data. Also, practices borrowed from areas outside of revenue management are adapted to this application. For example, the Expectation-Maximization (EM) and other imputation methods were investigated. These methods are evaluated and tested using simulation and actual airline data. An extension to the EM algorithm that results in a 41% improvement in forecast accuracy is presented.

Características

Peso 0.35 Kg
Produto sob encomenda Sim
Marca Universal-Publishers.com POD
I.S.B.N. 9781581121414
Referência 9781581121414
Altura 21.60 cm
Largura 14.00 cm
Profundidade 1.58 cm
Número de Páginas 276
Idioma Inglês
Cód. Barras 9781581121414
Ano da edição 2001
AutorRichard H. Zeni