Artboard 33 Artboard 16 Artboard 18 Artboard 15 Artboard 21 Artboard 1 Artboard 2 Artboard 5 Artboard 45 Artboard 45 Artboard 22 Artboard 9 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 8 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 13 Artboard 23 Artboard 10 Artboard 4 Artboard 9 Artboard 20 Artboard 6 Artboard 11 Artboard 7 Artboard 3 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 39 Artboard 24 Artboard 13 Artboard 19 Artboard 7 Artboard 24 Artboard 31 Artboard 4 Artboard 14 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 12 Artboard 17 Artboard 17 Artboard 6 Artboard 27 Artboard 19 Artboard 30 Artboard 29 Artboard 29 Artboard 26 Artboard 18 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 48 Artboard 50 Artboard 26 Artboard 16 Artboard 40 Artboard 21 Artboard 29 Artboard 10 Artboard 37 Artboard 3 Artboard 3 Artboard 46 Artboard 8

Information Retrieval (Cód: 6326101)

Lalmas,Mounia; C. J. Van Rijsbergen; Fabio Crestani

SPRINGER VERLAG POD

Ooopss! Este produto está temporariamente indisponível.
Mas não se preocupe, nós avisamos quando ele chegar.

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

Economize até R$ 0,00

R$ 1.764,52 (-15%) no boleto
R$ 2.075,90 em até 10x de R$ 207,59 sem juros
Cartão Saraiva R$ 1.972,11 (-5%) em até 1x no cartão ou em até 15x de R$ 138,39 sem juros

Crédito:
Boleto:
Cartão Saraiva:

Total: R$0,00

Em até 10x sem juros de R$ 0,00


Information Retrieval

R$2.075,90

Descrição

In recent years, there have been several attempts to define a logic for information retrieval (IR). The aim was to provide a rich and uniform representation of information and its semantics with the goal of
improving retrieval effectiveness. The basis of a logical model for IR is the assumption that queries and documents can be represented effectively by logical formulae. To retrieve a document, an IR system has to infer the
formula representing the query from the formula representing the document. This logical interpretation of query and document emphasizes that relevance in IR is an inference process. The use of logic to build IR
models enables one to obtain models that are more general than earlier well-known IR models. Indeed, some logical models are able to represent within a uniform framework various features of IR systems such as hypermedia
links, multimedia data, and user's knowledge. Logic also provides a common approach to the integration of IR systems with logical database systems. Finally, logic makes it possible to reason about an IR model and its
properties. This latter possibility is becoming increasingly more important since conventional evaluation methods, although good indicators of the effectiveness of IR systems, often give results which cannot be predicted,
or for that matter satisfactorily explained. However, logic by itself cannot fully model IR. The success or the failure of the inference of the query formula from the document formula is not enough to model
relevance in IR. It is necessary to take into account the uncertainty inherent in such an inference process. In 1986, Van Rijsbergen proposed the uncertainty logical principle to model relevance as an uncertain inference
process. When proposing the principle, Van Rijsbergen was not specific about which logic and which uncertainty theory to use. As a consequence, various logics and uncertainty theories have been proposed and investigated.
The choice of an appropriate logic and uncertainty mechanism has been a main research theme in logical IR modeling leading to a number of logical IR models over the years. Information Retrieval:
Uncertainty and Logics contains a collection of exciting papers proposing, developing and implementing logical IR models. This book is appropriate for use as a text for a graduate-level course on Information
Retrieval or Database Systems, and as a reference for researchers and practitioners in industry.

Características

Peso 0.45 Kg
Produto sob encomenda Sim
Marca SPRINGER VERLAG POD
I.S.B.N. 9780792383024
Referência 9780792383024
Altura 23.40 cm
Largura 15.60 cm
Profundidade 2.06 cm
Número de Páginas 356
Idioma Inglês
Cód. Barras 9780792383024
Ano da edição 1998
AutorLalmas,Mounia; C. J. Van Rijsbergen; Fabio Crestani