Artboard 33Artboard 16Artboard 18Artboard 13Artboard 42Artboard 21Artboard 4Artboard 5Artboard 45Artboard 22Artboard 7Artboard 42Artboard 23Artboard 17?Artboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32Artboard 6Artboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11Artboard 41Artboard 11Artboard 23Artboard 10Artboard 4Artboard 9Artboard 6Artboard 8Artboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44Artboard 16Artboard 24Artboard 13Artboard 5Artboard 24Artboard 31Artboard 1Artboard 12Artboard 27Artboard 30Artboard 36Artboard 44Artboard 9Artboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35Artboard 15Artboard 14Artboard 50Artboard 26Artboard 14Artboard 40Artboard 21Artboard 10Artboard 37Artboard 46Artboard 33Artboard 8

Introduction to Mixed Modelling - Beyond Regression and Analysis of Variance (Cód: 9712521)

N. W. Galwey

Wiley (Digital)

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 151,43

em até 5x de R$ 30,29 sem juros


Em até 1x sem juros de

Cartão Saraiva:


Em até 5x sem juros de

Introduction to Mixed Modelling - Beyond Regression and Analysis of Variance



Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs).   It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models. Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: “One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models...Each chapter is well-motivated by at least one carefully chosen example...demonstrating the broad applicability of mixed models in many different disciplines...most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic.”—Kerrie Nelson University of South Carolina, in American Statistician, 2007


Peso 0.00 Kg
Produto sob encomenda Sim
Marca Wiley (Digital)
Número de Páginas 504 (aproximado)
Idioma 337
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Proteção Drm Sim
Início da Venda 06/05/2017
Código do Formato Epub
Cód. Barras 9781118861820
Número da edição 2
Ano da Publicação 2014
AutorN. W. Galwey