Artboard 33atençãoArtboard 18atualizarconectividadeArtboard 42boletocarrinhocartãoArtboard 45cartão SaraivacelularArtboard 42Artboard 23checkArtboard 28Artboard 17?compararcompartilharcompartilhar ativoArtboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32ebookArtboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11fecharfilmesArtboard 23gamesArtboard 4Artboard 9Artboard 6hqimportadosinformáticaArtboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44curtirArtboard 24Artboard 13livrosArtboard 24Artboard 31menumúsicaArtboard 27Artboard 30Artboard 36Artboard 44outrospapelariaArtboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35estrelaestrela ativorelógiobuscaArtboard 50Artboard 26toda saraivaArtboard 40Artboard 21Artboard 10Artboard 37usuárioArtboard 46Artboard 33Artboard 8seta
e-book

Learning PySpark (Cód: 9437855)

Lee,Denny; Drabas,Tomasz

Packt Publishing

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 115,68

em até 3x de R$ 38,56 sem juros

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 3x sem juros de


Learning PySpark

R$115,68

Descrição

Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0About This Book• Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0• Develop and deploy efficient, scalable real-time Spark solutions• Take your understanding of using Spark with Python to the next level with this jump start guideWho This Book Is ForIf you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory.What You Will Learn• Learn about Apache Spark and the Spark 2.0 architecture• Build and interact with Spark DataFrames using Spark SQL• Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively• Read, transform, and understand data and use it to train machine learning models• Build machine learning models with MLlib and ML• Learn how to submit your applications programmatically using spark-submit• Deploy locally built applications to a clusterIn DetailApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark.You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command.By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications.Style and approachThis book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.

Características

Produto sob encomenda Não
Marca Packt Publishing
Cód. Barras 9781786466259
Acabamento e-book
Início da Venda 27/02/2017
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Tamanho do Arquivo 17317
Proteção Drm Sim
Idioma 337
Código do Formato Epub
Número de Páginas 274 (aproximado)
Ano da Publicação 117
Peso 0.00 Kg
AutorLee,Denny; Drabas,Tomasz