Artboard 33 Artboard 16 Artboard 18 Artboard 15 Artboard 21 Artboard 1 Artboard 2 Artboard 5 Artboard 45 Artboard 45 Artboard 22 Artboard 9 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 8 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 13 Artboard 23 Artboard 10 Artboard 4 Artboard 9 Artboard 20 Artboard 6 Artboard 11 Artboard 7 Artboard 3 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 39 Artboard 24 Artboard 13 Artboard 19 Artboard 7 Artboard 24 Artboard 31 Artboard 4 Artboard 14 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 12 Artboard 17 Artboard 17 Artboard 6 Artboard 27 Artboard 19 Artboard 30 Artboard 29 Artboard 29 Artboard 26 Artboard 18 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 48 Artboard 50 Artboard 26 Artboard 16 Artboard 40 Artboard 21 Artboard 29 Artboard 10 Artboard 37 Artboard 3 Artboard 3 Artboard 46 Artboard 8
e-book

Learning PySpark (Cód: 9437855)

Packt Publishing

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 115,68

em até 3x de R$ 38,56 sem juros

Total: R$0,00

Em até 1x sem juros de R$ 0,00


Origem

R$ 49,90

Crédito:
Boleto:
Cartão Saraiva:

Total: R$0,00

Em até 3x sem juros de R$ 0,00


Learning PySpark

R$115,68

Descrição

Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0About This Book• Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0• Develop and deploy efficient, scalable real-time Spark solutions• Take your understanding of using Spark with Python to the next level with this jump start guideWho This Book Is ForIf you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory.What You Will Learn• Learn about Apache Spark and the Spark 2.0 architecture• Build and interact with Spark DataFrames using Spark SQL• Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively• Read, transform, and understand data and use it to train machine learning models• Build machine learning models with MLlib and ML• Learn how to submit your applications programmatically using spark-submit• Deploy locally built applications to a clusterIn DetailApache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark.You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command.By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications.Style and approachThis book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.

Características

Peso 0.00 Kg
Produto sob encomenda Sim
Marca Packt Publishing
Número de Páginas 274 (aproximado)
Acabamento e-book
Territorialidade Internacional
Formato Livro Digital Epub
Proteção Drm Sim
Tamanho do Arquivo 17317
Cód. Barras 9781786466259
Ano da Publicação 117