Artboard 33atençãoArtboard 18atualizarconectividadeArtboard 42boletocarrinhocartãoArtboard 45cartão SaraivacelularArtboard 42Artboard 23checkArtboard 28Artboard 17?compararcompartilharcompartilhar ativoArtboard 28Artboard 43Artboard 49Artboard 47Artboard 15Artboard 32ebookArtboard 22Artboard 5Artboard 25Artboard 1Artboard 42Artboard 11fecharfilmesArtboard 23gamesArtboard 4Artboard 9Artboard 6hqimportadosinformáticaArtboard 7Artboard 3Artboard 12Artboard 25Artboard 34Artboard 43Artboard 44curtirArtboard 24Artboard 13livrosArtboard 24Artboard 31menumúsicaArtboard 27Artboard 30Artboard 36Artboard 44outrospapelariaArtboard 17Artboard 6Artboard 27Artboard 30Artboard 29Artboard 26Artboard 2Artboard 20Artboard 35estrelaestrela ativorelógiobuscaArtboard 50Artboard 26toda saraivaArtboard 40Artboard 21Artboard 10Artboard 37usuárioArtboard 46Artboard 33Artboard 8seta
e-book

Machine Learning - A Bayesian and Optimization Perspective (Cód: 9753196)

Theodoridis,Sergios

ELSEVIER S&T

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 291,28

em até 9x de R$ 32,36 sem juros

Total:

Em até 1x sem juros de


Crédito:
Boleto:
Cartão Saraiva:

Total:

Em até 9x sem juros de


Machine Learning - A Bayesian and Optimization Perspective

R$291,28

Descrição

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods  to  the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for  different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods.The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling.Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied.MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Características

Produto sob encomenda Não
Marca ELSEVIER S&T
Cód. Barras 9780128017227
Acabamento e-book
Início da Venda 02/04/2015
Territorialidade Internacional
Formato Livro Digital Epub
Gratuito Não
Tamanho do Arquivo 33749
Proteção Drm Sim
Idioma 337
Código do Formato Epub
Número de Páginas 1062 (aproximado)
Ano da Publicação 2015
Peso 0.00 Kg
AutorTheodoridis,Sergios