Artboard 33 Artboard 16 Artboard 18 Artboard 15 Artboard 21 Artboard 1 Artboard 2 Artboard 5 Artboard 45 Artboard 45 Artboard 22 Artboard 9 Artboard 23 Artboard 17? Artboard 28 Artboard 43 Artboard 49 Artboard 47 Artboard 38 Artboard 32 Artboard 8 Artboard 22 Artboard 5 Artboard 25 Artboard 1 Artboard 42 Artboard 11 Artboard 41 Artboard 13 Artboard 23 Artboard 10 Artboard 4 Artboard 9 Artboard 20 Artboard 6 Artboard 11 Artboard 7 Artboard 3 Artboard 3 Artboard 12 Artboard 25 Artboard 34 Artboard 39 Artboard 24 Artboard 13 Artboard 19 Artboard 7 Artboard 24 Artboard 31 Artboard 4 Artboard 14 Artboard 27 Artboard 30 Artboard 36 Artboard 44 Artboard 12 Artboard 17 Artboard 17 Artboard 6 Artboard 27 Artboard 19 Artboard 30 Artboard 29 Artboard 29 Artboard 26 Artboard 18 Artboard 2 Artboard 20 Artboard 35 Artboard 15 Artboard 14 Artboard 48 Artboard 50 Artboard 26 Artboard 16 Artboard 40 Artboard 21 Artboard 29 Artboard 10 Artboard 37 Artboard 3 Artboard 3 Artboard 46 Artboard 8
Livro Digital

The Fourier-Analytic Proof of Quadratic Reciprocity (Cód: 9309861)

Michael C. Berg

Wiley (Digital)

Ooops! Este produto não está mais a venda.
Mas não se preocupe, temos uma versão atualizada para você.

Ooopss! Este produto está fora de linha, mas temos outras opções para você.
Veja nossas sugestões abaixo!

R$ 256,79 em até 8x de R$ 32,10 sem juros
Cartão Saraiva R$ 256,79 ou em até 12x de R$ 21,40 sem juros

Crédito:
Boleto:
Cartão Saraiva:

Total: R$0,00

Em até 8x sem juros de R$ 0,00


The Fourier-Analytic Proof of Quadratic Reciprocity

R$256,79

Descrição

A unique synthesis of the three existing Fourier-analytic treatments of quadratic reciprocity.

The relative quadratic case was first settled by Hecke in 1923, then recast by Weil in 1964 into the language of unitary group representations. The analytic proof of the general n-th order case is still an open problem today, going back to the end of Hecke's famous treatise of 1923. The Fourier-Analytic Proof of Quadratic Reciprocity provides number theorists interested in analytic methods applied to reciprocity laws with a unique opportunity to explore the works of Hecke, Weil, and Kubota.

This work brings together for the first time in a single volume the three existing formulations of the Fourier-analytic proof of quadratic reciprocity. It shows how Weil's groundbreaking representation-theoretic treatment is in fact equivalent to Hecke's classical approach, then goes a step further, presenting Kubota's algebraic reformulation of the Hecke-Weil proof. Extensive commutative diagrams for comparing the Weil and Kubota architectures are also featured.

The author clearly demonstrates the value of the analytic approach, incorporating some of the most powerful tools of modern number theory, including adèles, metaplectric groups, and representations. Finally, he points out that the critical common factor among the three proofs is Poisson summation, whose generalization may ultimately provide the resolution for Hecke's open problem.

Características

Produto sob encomenda Sim
Marca Wiley (Digital)
Cód. Barras 9781118031193
Acabamento ebook
Início da Venda 29/12/2015
Territorialidade Internacional
Formato Livro Digital Pdf
Gratuito Não
Proteção Drm Sim
Número da edição 1
Idioma 337
Código do Formato Pdf
Ano da Publicação 111
Peso 0.00 Kg
AutorMichael C. Berg

Avaliações

Avaliação geral: 0

Você está revisando: The Fourier-Analytic Proof of Quadratic Reciprocity